Streaming PCA: Matching Matrix Bernstein and Near-Optimal Finite Sample Guarantees for Oja's Algorithm

22 Feb 2016  ·  Prateek Jain, Chi Jin, Sham M. Kakade, Praneeth Netrapalli, Aaron Sidford ·

This work provides improved guarantees for streaming principle component analysis (PCA). Given $A_1, \ldots, A_n\in \mathbb{R}^{d\times d}$ sampled independently from distributions satisfying $\mathbb{E}[A_i] = \Sigma$ for $\Sigma \succeq \mathbf{0}$, this work provides an $O(d)$-space linear-time single-pass streaming algorithm for estimating the top eigenvector of $\Sigma$. The algorithm nearly matches (and in certain cases improves upon) the accuracy obtained by the standard batch method that computes top eigenvector of the empirical covariance $\frac{1}{n} \sum_{i \in [n]} A_i$ as analyzed by the matrix Bernstein inequality. Moreover, to achieve constant accuracy, our algorithm improves upon the best previous known sample complexities of streaming algorithms by either a multiplicative factor of $O(d)$ or $1/\mathrm{gap}$ where $\mathrm{gap}$ is the relative distance between the top two eigenvalues of $\Sigma$. These results are achieved through a novel analysis of the classic Oja's algorithm, one of the oldest and most popular algorithms for streaming PCA. In particular, this work shows that simply picking a random initial point $w_0$ and applying the update rule $w_{i + 1} = w_i + \eta_i A_i w_i$ suffices to accurately estimate the top eigenvector, with a suitable choice of $\eta_i$. We believe our result sheds light on how to efficiently perform streaming PCA both in theory and in practice and we hope that our analysis may serve as the basis for analyzing many variants and extensions of streaming PCA.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods