Strictly Low Rank Constraint Optimization -- An Asymptotically $\mathcal{O}(\frac{1}{t^2})$ Method

4 Jul 2023  ·  Mengyuan Zhang, Kai Liu ·

We study a class of non-convex and non-smooth problems with \textit{rank} regularization to promote sparsity in optimal solution. We propose to apply the proximal gradient descent method to solve the problem and accelerate the process with a novel support set projection operation on the singular values of the intermediate update. We show that our algorithms are able to achieve a convergence rate of $O(\frac{1}{t^2})$, which is exactly same as Nesterov's optimal convergence rate for first-order methods on smooth and convex problems. Strict sparsity can be expected and the support set of singular values during each update is monotonically shrinking, which to our best knowledge, is novel in momentum-based algorithms.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here