STRIDE along Spectrahedral Vertices for Solving Large-Scale Rank-One Semidefinite Relaxations

28 May 2021  ·  Heng Yang, Ling Liang, Kim-Chuan Toh, Luca Carlone ·

We consider solving high-order semidefinite programming (SDP) relaxations of nonconvex polynomial optimization problems (POPs) that admit rank-one optimal solutions. Existing approaches, which solve the SDP independently from the POP, either cannot scale to large problems or suffer from slow convergence due to the typical degeneracy of such SDPs... We propose a new algorithmic framework, called SpecTrahedral pRoximal gradIent Descent along vErtices (STRIDE), that blends fast local search on the nonconvex POP with global descent on the convex SDP. Specifically, STRIDE follows a globally convergent trajectory driven by a proximal gradient method (PGM) for solving the SDP, while simultaneously probing long, but safeguarded, rank-one "strides", generated by fast nonlinear programming algorithms on the POP, to seek rapid descent. We prove STRIDE has global convergence. To solve the subproblem of projecting a given point onto the feasible set of the SDP, we reformulate the projection step as a continuously differentiable unconstrained optimization and apply a limited-memory BFGS method to achieve both scalability and accuracy. We conduct numerical experiments on solving second-order SDP relaxations arising from two important applications in machine learning and computer vision. STRIDE dominates a diverse set of five existing SDP solvers and is the only solver that can solve degenerate rank-one SDPs to high accuracy (e.g., KKT residuals below 1e-9), even in the presence of millions of equality constraints. read more

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here