Structural Compression of Convolutional Neural Networks

20 May 2017Reza Abbasi-AslBin Yu

Deep convolutional neural networks (CNNs) have been successful in many tasks in machine vision, however, millions of weights in the form of thousands of convolutional filters in CNNs makes them difficult for human intepretation or understanding in science. In this article, we introduce CAR, a greedy structural compression scheme to obtain smaller and more interpretable CNNs, while achieving close to original accuracy... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet