Structural Return Maximization for Reinforcement Learning

12 May 2014  ·  Joshua Joseph, Javier Velez, Nicholas Roy ·

Batch Reinforcement Learning (RL) algorithms attempt to choose a policy from a designer-provided class of policies given a fixed set of training data. Choosing the policy which maximizes an estimate of return often leads to over-fitting when only limited data is available, due to the size of the policy class in relation to the amount of data available. In this work, we focus on learning policy classes that are appropriately sized to the amount of data available. We accomplish this by using the principle of Structural Risk Minimization, from Statistical Learning Theory, which uses Rademacher complexity to identify a policy class that maximizes a bound on the return of the best policy in the chosen policy class, given the available data. Unlike similar batch RL approaches, our bound on return requires only extremely weak assumptions on the true system.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here