Structure-Aware Transformer Policy for Inhomogeneous Multi-Task Reinforcement Learning

ICLR 2022  ·  Sunghoon Hong, Deunsol Yoon, Kee-Eung Kim ·

Modular Reinforcement Learning, where the agent is assumed to be morphologically structured as a graph, for example composed of limbs and joints, aims to learn a policy that is transferable to a structurally similar but different agent. Compared to traditional Multi-Task Reinforcement Learning, this promising approach allows us to cope with inhomogeneous tasks where the state and action space dimensions differ across tasks. Graph Neural Networks are a natural model for representing the pertinent policies, but a recent work has shown that their multi-hop message passing mechanism is not ideal for conveying important information to other modules and thus a transformer model without morphological information was proposed. In this work, we argue that the morphological information is still very useful and propose a transformer policy model that effectively encodes such information. Specifically, we encode the morphological information in terms of the traversal-based positional embedding and the graph-based relational embedding. We empirically show that the morphological information is crucial for modular reinforcement learning, substantially outperforming prior state-of-the-art methods on multi-task learning as well as transfer learning settings with different state and action space dimensions.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here