We study the structure learning problem for $H$-colorings, an important class of Markov random fields that capture key combinatorial structures on graphs, including proper colorings and independent sets, as well as spin systems from statistical physics. The learning problem is as follows: for a fixed (and known) constraint graph $H$ with $q$ colors and an unknown graph $G=(V,E)$ with $n$ vertices, given uniformly random $H$-colorings of $G$, how many samples are required to learn the edges of the unknown graph $G$?.. (read more)

PDF
Submit
results from this paper
to get state-of-the-art GitHub badges and help the
community compare results to other papers.

METHOD | TYPE | |
---|---|---|

🤖 No Methods Found | Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet |