Structure Regularized Neural Network for Entity Relation Classification for Chinese Literature Text

NAACL 2018  ·  Ji Wen, Xu sun, Xuancheng Ren, Qi Su ·

Relation classification is an important semantic processing task in the field of natural language processing. In this paper, we propose the task of relation classification for Chinese literature text... A new dataset of Chinese literature text is constructed to facilitate the study in this task. We present a novel model, named Structure Regularized Bidirectional Recurrent Convolutional Neural Network (SR-BRCNN), to identify the relation between entities. The proposed model learns relation representations along the shortest dependency path (SDP) extracted from the structure regularized dependency tree, which has the benefits of reducing the complexity of the whole model. Experimental results show that the proposed method significantly improves the F1 score by 10.3, and outperforms the state-of-the-art approaches on Chinese literature text. read more

PDF Abstract NAACL 2018 PDF NAACL 2018 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here