Structured Learning for Temporal Relation Extraction from Clinical Records

EACL 2017  ·  Artuur Leeuwenberg, Marie-Francine Moens ·

We propose a scalable structured learning model that jointly predicts temporal relations between events and temporal expressions (TLINKS), and the relation between these events and the document creation time (DCTR). We employ a structured perceptron, together with integer linear programming constraints for document-level inference during training and prediction to exploit relational properties of temporality, together with global learning of the relations at the document level... Moreover, this study gives insights in the results of integrating constraints for temporal relation extraction when using structured learning and prediction. Our best system outperforms the state-of-the art on both the CONTAINS TLINK task, and the DCTR task. read more

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here