Structured Regression Gradient Boosting

CVPR 2016  ·  Ferran Diego, Fred A. Hamprecht ·

We propose a new way to train a structured output prediction model. More specifically, we train nonlinear data terms in a Gaussian Conditional Random Field (GCRF) by a generalized version of gradient boosting. The approach is evaluated on three challenging regression benchmarks: vessel detection, single image depth estimation and image inpainting. These experiments suggest that the proposed boosting framework matches or exceeds the state-of-the-art.

PDF Abstract


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here