Studying Software Engineering Patterns for Designing Machine Learning Systems

10 Oct 2019  ·  Hironori Washizaki, Hiromu Uchida, Foutse khomh, Yann-Gael Gueheneuc ·

Machine-learning (ML) techniques have become popular in the recent years. ML techniques rely on mathematics and on software engineering. Researchers and practitioners studying best practices for designing ML application systems and software to address the software complexity and quality of ML techniques. Such design practices are often formalized as architecture patterns and design patterns by encapsulating reusable solutions to commonly occurring problems within given contexts. However, to the best of our knowledge, there has been no work collecting, classifying, and discussing these software-engineering (SE) design patterns for ML techniques systematically. Thus, we set out to collect good/bad SE design patterns for ML techniques to provide developers with a comprehensive and ordered classification of such patterns. We report here preliminary results of a systematic-literature review (SLR) of good/bad design patterns for ML.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here