Sturm: Sparse Tubal-Regularized Multilinear Regression for fMRI

4 Dec 2018Wenwen LiJian LouShuo ZhouHaiping Lu

While functional magnetic resonance imaging (fMRI) is important for healthcare/neuroscience applications, it is challenging to classify or interpret due to its multi-dimensional structure, high dimensionality, and small number of samples available. Recent sparse multilinear regression methods based on tensor are emerging as promising solutions for fMRI, yet existing works rely on unfolding/folding operations and a tensor rank relaxation with limited tightness... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet