Style Spectroscope: Improve Interpretability and Controllability through Fourier Analysis

12 Aug 2022  ·  Zhiyu Jin, Xuli Shen, Bin Li, xiangyang xue ·

Universal style transfer (UST) infuses styles from arbitrary reference images into content images. Existing methods, while enjoying many practical successes, are unable of explaining experimental observations, including different performances of UST algorithms in preserving the spatial structure of content images. In addition, methods are limited to cumbersome global controls on stylization, so that they require additional spatial masks for desired stylization. In this work, we provide a systematic Fourier analysis on a general framework for UST. We present an equivalent form of the framework in the frequency domain. The form implies that existing algorithms treat all frequency components and pixels of feature maps equally, except for the zero-frequency component. We connect Fourier amplitude and phase with Gram matrices and a content reconstruction loss in style transfer, respectively. Based on such equivalence and connections, we can thus interpret different structure preservation behaviors between algorithms with Fourier phase. Given the interpretations we have, we propose two manipulations in practice for structure preservation and desired stylization. Both qualitative and quantitative experiments demonstrate the competitive performance of our method against the state-of-the-art methods. We also conduct experiments to demonstrate (1) the abovementioned equivalence, (2) the interpretability based on Fourier amplitude and phase and (3) the controllability associated with frequency components.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here