Stylistically User-Specific Generation

Recent neural models for response generation show good results in terms of general responses. In real conversations, however, depending on the speaker/responder, similar utterances should require different responses. In this study, we attempt to consider individual user{'}s information in adjusting the notable sequence-to-sequence (seq2seq) model for more diverse, user-specific responses. We assume that we need user-specific features to adjust the response and we argue that some selected representative words from the users are suitable for this task. Furthermore, we prove that even for unseen or unknown users, our model can provide more diverse and interesting responses, while maintaining correlation with input utterances. Experimental results with human evaluation show that our model can generate more interesting responses than the popular seq2seqmodel and achieve higher relevance with input utterances than our baseline.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here