Sub-GAN: An Unsupervised Generative Model via Subspaces

ECCV 2018 Jie LiangJufeng YangHsin-Ying LeeKai WangMing-Hsuan Yang

The recent years have witnessed significant growth in constructing robust generative models to capture informative distributions of natural data. However, it is difficult to fully exploit the distribution of complex data, like images and videos, due to the high dimensionality of ambient space... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet