Sublinear quantum algorithms for training linear and kernel-based classifiers

4 Apr 2019  ·  Tongyang Li, Shouvanik Chakrabarti, Xiaodi Wu ·

We investigate quantum algorithms for classification, a fundamental problem in machine learning, with provable guarantees. Given $n$ $d$-dimensional data points, the state-of-the-art (and optimal) classical algorithm for training classifiers with constant margin runs in $\tilde{O}(n+d)$ time. We design sublinear quantum algorithms for the same task running in $\tilde{O}(\sqrt{n} +\sqrt{d})$ time, a quadratic improvement in both $n$ and $d$. Moreover, our algorithms use the standard quantization of the classical input and generate the same classical output, suggesting minimal overheads when used as subroutines for end-to-end applications. We also demonstrate a tight lower bound (up to poly-log factors) and discuss the possibility of implementation on near-term quantum machines. As a side result, we also give sublinear quantum algorithms for approximating the equilibria of $n$-dimensional matrix zero-sum games with optimal complexity $\tilde{\Theta}(\sqrt{n})$.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here