SubmodBoxes: Near-Optimal Search for a Set of Diverse Object Proposals

NeurIPS 2015  ·  Qing Sun, Dhruv Batra ·

This paper formulates the search for a set of bounding boxes (as needed in object proposal generation) as a monotone submodular maximization problem over the space of all possible bounding boxes in an image. Since the number of possible bounding boxes in an image is very large $O(#pixels^2)$, even a single linear scan to perform the greedy augmentation for submodular maximization is intractable. Thus, we formulate the greedy augmentation step as a Branch-and-Bound scheme. In order to speed up repeated application of B\&B, we propose a novel generalization of Minoux’s ‘lazy greedy’ algorithm to the B\&B tree. Theoretically, our proposed formulation provides a new understanding to the problem, and contains classic heuristic approaches such as Sliding Window+Non-Maximal Suppression (NMS) and and Efficient Subwindow Search (ESS) as special cases. Empirically, we show that our approach leads to a state-of-art performance on object proposal generation via a novel diversity measure.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods