Submodular meets Structured: Finding Diverse Subsets in Exponentially-Large Structured Item Sets

To cope with the high level of ambiguity faced in domains such as Computer Vision or Natural Language processing, robust prediction methods often search for a diverse set of high-quality candidate solutions or proposals. In structured prediction problems, this becomes a daunting task, as the solution space (image labelings, sentence parses, etc.) is exponentially large. We study greedy algorithms for finding a diverse subset of solutions in structured-output spaces by drawing new connections between submodular functions over combinatorial item sets and High-Order Potentials (HOPs) studied for graphical models. Specifically, we show via examples that when marginal gains of submodular diversity functions allow structured representations, this enables efficient (sub-linear time) approximate maximization by reducing the greedy augmentation step to inference in a factor graph with appropriately constructed HOPs. We discuss benefits, tradeoffs, and show that our constructions lead to significantly better proposals.

PDF Abstract NeurIPS 2014 PDF NeurIPS 2014 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here