Subspace Clustering via Variance Regularized Ridge Regression

CVPR 2017  ·  Chong Peng, Zhao Kang, Qiang Cheng ·

Spectral clustering based subspace clustering methods have emerged recently. When the inputs are 2-dimensional (2D) data, most existing clustering methods convert such data to vectors as preprocessing, which severely damages spatial information of the data. In this paper, we propose a novel subspace clustering method for 2D data with enhanced capability of retaining spatial information for clustering. It seeks two projection matrices and simultaneously constructs a linear representation of the projected data, such that the sought projections help construct the most expressive representation with the most variational information. We regularize our method based on covariance matrices directly obtained from 2D data, which have much smaller size and are more computationally amiable. Moreover, to exploit nonlinear structures of the data, a nonlinear version is proposed, which constructs an adaptive manifold according to updated projections. The learning processes of projections, representation, and manifold thus mutually enhance each other, leading to a powerful data representation. Efficient optimization procedures are proposed, which generate non-increasing objective value sequence with theoretical convergence guarantee. Extensive experimental results confirm the effectiveness of proposed method.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here