Subspace Clustering With Priors via Sparse Quadratically Constrained Quadratic Programming

This paper considers the problem of recovering a subspace arrangement from noisy samples, potentially corrupted with outliers. Our main result shows that this problem can be formulated as a convex semi-definite optimization problem subject to an additional rank constrain that involves only a very small number of variables. This is established by first reducing the problem to a (generically non-convex) quadratically constrained quadratic problem and then using its special sparse structure to find conditions guaranteeing that a suitably built convex relaxation is indeed exact. When combined with the commonly used nuclear norm relaxation for rank, the results above lead to computationally efficient algorithms with optimality guarantees. A salient feature of the proposed approach is its ability to incorporate existing a-priori information about the noise, co-ocurrences, and percentage of outliers. These results are illustrated with several examples where the proposed algorithm is shown to outperform existing approaches.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here