Subspace Decomposition based DNN algorithm for elliptic-type multi-scale PDEs

10 Dec 2021  ·  Xi-An Li, Zhi-Qin John Xu, Lei Zhang ·

While deep learning algorithms demonstrate a great potential in scientific computing, its application to multi-scale problems remains to be a big challenge. This is manifested by the "frequency principle" that neural networks tend to learn low frequency components first. Novel architectures such as multi-scale deep neural network (MscaleDNN) were proposed to alleviate this problem to some extent. In this paper, we construct a subspace decomposition based DNN (dubbed SD$^2$NN) architecture for a class of multi-scale problems by combining traditional numerical analysis ideas and MscaleDNN algorithms. The proposed architecture includes one low frequency normal DNN submodule, and one (or a few) high frequency MscaleDNN submodule(s), which are designed to capture the smooth part and the oscillatory part of the multi-scale solutions, respectively. In addition, a novel trigonometric activation function is incorporated in the SD$^2$NN model. We demonstrate the performance of the SD$^2$NN architecture through several benchmark multi-scale problems in regular or irregular geometric domains. Numerical results show that the SD$^2$NN model is superior to existing models such as MscaleDNN.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here