Substitutional Neural Image Compression

16 May 2021  ·  Xiao Wang, Wei Jiang, Wei Wang, Shan Liu, Brian Kulis, Peter Chin ·

We describe Substitutional Neural Image Compression (SNIC), a general approach for enhancing any neural image compression model, that requires no data or additional tuning of the trained model. It boosts compression performance toward a flexible distortion metric and enables bit-rate control using a single model instance. The key idea is to replace the image to be compressed with a substitutional one that outperforms the original one in a desired way. Finding such a substitute is inherently difficult for conventional codecs, yet surprisingly favorable for neural compression models thanks to their fully differentiable structures. With gradients of a particular loss backpropogated to the input, a desired substitute can be efficiently crafted iteratively. We demonstrate the effectiveness of SNIC, when combined with various neural compression models and target metrics, in improving compression quality and performing bit-rate control measured by rate-distortion curves. Empirical results of control precision and generation speed are also discussed.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here