Super ensemble learning for daily streamflow forecasting: Large-scale demonstration and comparison with multiple machine learning algorithms

9 Sep 2019  ·  Hristos Tyralis, Georgia Papacharalampous, Andreas Langousis ·

Daily streamflow forecasting through data-driven approaches is traditionally performed using a single machine learning algorithm. Existing applications are mostly restricted to examination of few case studies, not allowing accurate assessment of the predictive performance of the algorithms involved. Here we propose super learning (a type of ensemble learning) by combining 10 machine learning algorithms. We apply the proposed algorithm in one-step ahead forecasting mode. For the application, we exploit a big dataset consisting of 10-year long time series of daily streamflow, precipitation and temperature from 511 basins. The super learner improves over the performance of the linear regression algorithm by 20.06%, outperforming the "hard to beat in practice" equal weight combiner. The latter improves over the performance of the linear regression algorithm by 19.21%. The best performing individual machine learning algorithm is neural networks, which improves over the performance of the linear regression algorithm by 16.73%, followed by extremely randomized trees (16.40%), XGBoost (15.92%), loess (15.36%), random forests (12.75%), polyMARS (12.36%), MARS (4.74%), lasso (0.11%) and support vector regression (-0.45%). Based on the obtained large-scale results, we propose super learning for daily streamflow forecasting.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods