Super-Resolution Perception for Industrial Sensor Data

6 Sep 2018  ·  Jinjin Gu, Haoyu Chen, Guolong Liu, Gaoqi Liang, Xinlei Wang, Junhua Zhao ·

In this paper, we present the problem formulation and methodology framework of Super-Resolution Perception (SRP) on industrial sensor data. Industrial intelligence relies on high-quality industrial sensor data for system control, diagnosis, fault detection, identification, and monitoring. However, the provision of high-quality data may be expensive in some cases. In this paper, we propose a novel machine learning problem -- the SRP problem as reconstructing high-quality data from unsatisfactory sensor data in industrial systems. Advanced generative models are then proposed to solve the SRP problem. This technology makes it possible to empower existing industrial facilities without upgrading existing sensors or deploying additional sensors. We first mathematically formulate the SRP problem under the Maximum a Posteriori (MAP) estimation framework. A case study is then presented, which performs SRP on smart meter data. A network, namely SRPNet, is proposed to generate high-frequency load data from low-frequency data. We further employ a novel recognition-based loss and relativistic adversarial loss to constraint the reconstruction of waveforms explicitly. Experiments demonstrate that our SRP model can reconstruct high-frequency data effectively. Moreover, the reconstructed high-frequency data can lead to better appliance monitoring results without changing the monitoring appliances.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here