Super-resolution Probabilistic Rain Prediction from Satellite Data Using 3D U-Nets and EarthFormers

6 Dec 2022  ·  Yang Li, Haiyu Dong, Zuliang Fang, Jonathan Weyn, Pete Luferenko ·

Accurate and timely rain prediction is crucial for decision making and is also a challenging task. This paper presents a solution which won the 2 nd prize in the Weather4cast 2022 NeurIPS competition using 3D U-Nets and EarthFormers for 8-hour probabilistic rain prediction based on multi-band satellite images. The spatial context effect of the input satellite image has been deeply explored and optimal context range has been found. Based on the imbalanced rain distribution, we trained multiple models with different loss functions. To further improve the model performance, multi-model ensemble and threshold optimization were used to produce the final probabilistic rain prediction. Experiment results and leaderboard scores demonstrate that optimal spatial context, combined loss function, multi-model ensemble, and threshold optimization all provide modest model gain. A permutation test was used to analyze the effect of each satellite band on rain prediction, and results show that satellite bands signifying cloudtop phase (8.7 um) and cloud-top height (10.8 and 13.4 um) are the best predictors for rain prediction. The source code is available at

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here