Supervised Bipartite Graph Inference

NeurIPS 2008  ·  Yoshihiro Yamanishi ·

We formulate the problem of bipartite graph inference as a supervised learning problem, and propose a new method to solve it from the viewpoint of distance metric learning. The method involves the learning of two mappings of the heterogeneous objects to a unified Euclidean space representing the network topology of the bipartite graph, where the graph is easy to infer. The algorithm can be formulated as an optimization problem in a reproducing kernel Hilbert space. We report encouraging results on the problem of compound-protein interaction network reconstruction from chemical structure data and genomic sequence data.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here