Supervised classification via minimax probabilistic transformations

2 Feb 2019Santiago MazuelasAndrea ZanoniAritz Perez

Conventional techniques for supervised classification constrain the classification rules considered and use surrogate losses for classification 0-1 loss. Favored families of classification rules are those that enjoy parametric representations suitable for surrogate loss minimization, and low complexity properties suitable for overfitting control... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet