Supervised Quantile Normalization for Low-rank Matrix Approximation

8 Feb 2020  ·  Marco Cuturi, Olivier Teboul, Jonathan Niles-Weed, Jean-Philippe Vert ·

Low rank matrix factorization is a fundamental building block in machine learning, used for instance to summarize gene expression profile data or word-document counts. To be robust to outliers and differences in scale across features, a matrix factorization step is usually preceded by ad-hoc feature normalization steps, such as \texttt{tf-idf} scaling or data whitening. We propose in this work to learn these normalization operators jointly with the factorization itself. More precisely, given a $d\times n$ matrix $X$ of $d$ features measured on $n$ individuals, we propose to learn the parameters of quantile normalization operators that can operate row-wise on the values of $X$ and/or of its factorization $UV$ to improve the quality of the low-rank representation of $X$ itself. This optimization is facilitated by the introduction of a new differentiable quantile normalization operator built using optimal transport, providing new results on top of existing work by (Cuturi et al. 2019). We demonstrate the applicability of these techniques on synthetic and genomics datasets.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here