Surprises in High-Dimensional Ridgeless Least Squares Interpolation

19 Mar 2019  ·  Trevor Hastie, Andrea Montanari, Saharon Rosset, Ryan J. Tibshirani ·

Interpolators -- estimators that achieve zero training error -- have attracted growing attention in machine learning, mainly because state-of-the art neural networks appear to be models of this type. In this paper, we study minimum $\ell_2$ norm (``ridgeless'') interpolation in high-dimensional least squares regression. We consider two different models for the feature distribution: a linear model, where the feature vectors $x_i \in {\mathbb R}^p$ are obtained by applying a linear transform to a vector of i.i.d.\ entries, $x_i = \Sigma^{1/2} z_i$ (with $z_i \in {\mathbb R}^p$); and a nonlinear model, where the feature vectors are obtained by passing the input through a random one-layer neural network, $x_i = \varphi(W z_i)$ (with $z_i \in {\mathbb R}^d$, $W \in {\mathbb R}^{p \times d}$ a matrix of i.i.d.\ entries, and $\varphi$ an activation function acting componentwise on $W z_i$). We recover -- in a precise quantitative way -- several phenomena that have been observed in large-scale neural networks and kernel machines, including the "double descent" behavior of the prediction risk, and the potential benefits of overparametrization.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here