Survey and cross-benchmark comparison of remaining time prediction methods in business process monitoring

8 May 2018Ilya VerenichMarlon DumasMarcello La RosaFabrizio MaggiIrene Teinemaa

Predictive business process monitoring methods exploit historical process execution logs to generate predictions about running instances (called cases) of a business process, such as the prediction of the outcome, next activity or remaining cycle time of a given process case. These insights could be used to support operational managers in taking remedial actions as business processes unfold, e.g. shifting resources from one case onto another to ensure this latter is completed on time... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet