SVRG Meets AdaGrad: Painless Variance Reduction

Variance reduction (VR) methods for finite-sum minimization typically require the knowledge of problem-dependent constants that are often unknown and difficult to estimate. To address this, we use ideas from adaptive gradient methods to propose AdaSVRG, which is a more robust variant of SVRG, a common VR method. AdaSVRG uses AdaGrad in the inner loop of SVRG, making it robust to the choice of step-size. When minimizing a sum of n smooth convex functions, we prove that a variant of AdaSVRG requires $\tilde{O}(n + 1/\epsilon)$ gradient evaluations to achieve an $O(\epsilon)$-suboptimality, matching the typical rate, but without needing to know problem-dependent constants. Next, we leverage the properties of AdaGrad to propose a heuristic that adaptively determines the length of each inner-loop in AdaSVRG. Via experiments on synthetic and real-world datasets, we validate the robustness and effectiveness of AdaSVRG, demonstrating its superior performance over standard and other "tune-free" VR methods.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods