SWAG: A Wrapper Method for Sparse Learning

23 Jun 2020Roberto MolinariGaetan BakalliStéphane GuerrierCesare MiglioliSamuel OrsoOlivier Scaillet

Predictive power has always been the main research focus of learning algorithms. While the general approach for these algorithms is to consider all possible attributes in a dataset to best predict the response of interest, an important branch of research is focused on sparse learning... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet