SwiftNet: Real-time Video Object Segmentation

9 Feb 2021 Haochen Wang XiaoLong Jiang Haibing Ren Yao Hu Song Bai

In this work we present SwiftNet for real-time semi-supervised video object segmentation (one-shot VOS), which reports 77.8% J&F and 70 FPS on DAVIS 2017 validation dataset, leading all present solutions in overall accuracy and speed performance. We achieve this by elaborately compressing spatiotemporal redundancy in matching-based VOS via Pixel-Adaptive Memory (PAM)... (read more)

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet