SWP-LeafNET: A novel multistage approach for plant leaf identification based on deep CNN

10 Sep 2020  ·  Ali Beikmohammadi, Karim Faez, Ali Motallebi ·

Modern scientific and technological advances allow botanists to use computer vision-based approaches for plant identification tasks. These approaches have their own challenges. Leaf classification is a computer-vision task performed for the automated identification of plant species, a serious challenge due to variations in leaf morphology, including its size, texture, shape, and venation. Researchers have recently become more inclined toward deep learning-based methods rather than conventional feature-based methods due to the popularity and successful implementation of deep learning methods in image analysis, object recognition, and speech recognition. In this paper, to have an interpretable and reliable system, a botanist's behavior is modeled in leaf identification by proposing a highly-efficient method of maximum behavioral resemblance developed through three deep learning-based models. Different layers of the three models are visualized to ensure that the botanist's behavior is modeled accurately. The first and second models are designed from scratch. Regarding the third model, the pre-trained architecture MobileNetV2 is employed along with the transfer-learning technique. The proposed method is evaluated on two well-known datasets: Flavia and MalayaKew. According to a comparative analysis, the suggested approach is more accurate than hand-crafted feature extraction methods and other deep learning techniques in terms of 99.67% and 99.81% accuracy. Unlike conventional techniques that have their own specific complexities and depend on datasets, the proposed method requires no hand-crafted feature extraction. Also, it increases accuracy as compared with other deep learning techniques. Moreover, SWP-LeafNET is distributable and considerably faster than other methods because of using shallower models with fewer parameters asynchronously.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods