Symbol Emergence as an Interpersonal Multimodal Categorization

31 May 2019  ·  Yoshinobu Hagiwara, Hiroyoshi Kobayashi, Akira Taniguchi, Tadahiro Taniguchi ·

This study focuses on category formation for individual agents and the dynamics of symbol emergence in a multi-agent system through semiotic communication. Semiotic communication is defined, in this study, as the generation and interpretation of signs associated with the categories formed through the agent's own sensory experience or by exchange of signs with other agents. From the viewpoint of language evolution and symbol emergence, organization of a symbol system in a multi-agent system is considered as a bottom-up and dynamic process, where individual agents share the meaning of signs and categorize sensory experience. A constructive computational model can explain the mutual dependency of the two processes and has mathematical support that guarantees a symbol system's emergence and sharing within the multi-agent system. In this paper, we describe a new computational model that represents symbol emergence in a two-agent system based on a probabilistic generative model for multimodal categorization. It models semiotic communication via a probabilistic rejection based on the receiver's own belief. We have found that the dynamics by which cognitively independent agents create a symbol system through their semiotic communication can be regarded as the inference process of a hidden variable in an interpersonal multimodal categorizer, if we define the rejection probability based on the Metropolis-Hastings algorithm. The validity of the proposed model and algorithm for symbol emergence is also verified in an experiment with two agents observing daily objects in the real-world environment. The experimental results demonstrate that our model reproduces the phenomena of symbol emergence, which does not require a teacher who would know a pre-existing symbol system. Instead, the multi-agent system can form and use a symbol system without having pre-existing categories.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here