Symbol Spotting on Digital Architectural Floor Plans Using a Deep Learning-based Framework

1 Jun 2020Alireza RezvanifarMelissa CoteAlexandra Branzan Albu

This papers focuses on symbol spotting on real-world digital architectural floor plans with a deep learning (DL)-based framework. Traditional on-the-fly symbol spotting methods are unable to address the semantic challenge of graphical notation variability, i.e. low intra-class symbol similarity, an issue that is particularly important in architectural floor plan analysis... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet