Symmetry-Aware Nonrigid Matching of Incomplete 3D Surfaces

We present a nonrigid shape matching technique for establishing correspondences of incomplete 3D surfaces that exhibit intrinsic reflectional symmetry. The key for solving the symmetry ambiguity problem is to use a point-wise local mesh descriptor that has orientation and is thus sensitive to local reflectional symmetry, e.g. discriminating the left hand and the right hand. We devise a way to compute the descriptor orientation by taking the gradients of a scalar field called the average diffusion distance (ADD). Because ADD is smoothly defined on a surface, invariant under isometry/scale and robust to topological errors, the robustness of the descriptor to non-rigid deformations is improved. In addition, we propose a graph matching algorithm called iterative spectral relaxation which combines spectral embedding and spectral graph matching. This formulation allows us to define pairwise constraints in a scale-invariant manner from k-nearest neighbor local pairs such that non-isometric deformations can be robustly handled. Experimental results show that our method can match challenging surfaces with global intrinsic symmetry, data incompleteness and non-isometric deformations.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here