Symmetry, Saddle Points, and Global Optimization Landscape of Nonconvex Matrix Factorization

29 Dec 2016  ·  Xingguo Li, Junwei Lu, Raman Arora, Jarvis Haupt, Han Liu, Zhaoran Wang, Tuo Zhao ·

We propose a general theory for studying the \xl{landscape} of nonconvex \xl{optimization} with underlying symmetric structures \tz{for a class of machine learning problems (e.g., low-rank matrix factorization, phase retrieval, and deep linear neural networks)}. In specific, we characterize the locations of stationary points and the null space of Hessian matrices \xl{of the objective function} via the lens of invariant groups\removed{for associated optimization problems, including low-rank matrix factorization, phase retrieval, and deep linear neural networks}. As a major motivating example, we apply the proposed general theory to characterize the global \xl{landscape} of the \xl{nonconvex optimization in} low-rank matrix factorization problem. In particular, we illustrate how the rotational symmetry group gives rise to infinitely many nonisolated strict saddle points and equivalent global minima of the objective function. By explicitly identifying all stationary points, we divide the entire parameter space into three regions: ($\cR_1$) the region containing the neighborhoods of all strict saddle points, where the objective has negative curvatures; ($\cR_2$) the region containing neighborhoods of all global minima, where the objective enjoys strong convexity along certain directions; and ($\cR_3$) the complement of the above regions, where the gradient has sufficiently large magnitudes. We further extend our result to the matrix sensing problem. Such global landscape implies strong global convergence guarantees for popular iterative algorithms with arbitrary initial solutions.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here