Synaptic motor adaptation: A three-factor learning rule for adaptive robotic control in spiking neural networks

2 Jun 2023  ·  Samuel Schmidgall, Joe Hays ·

Legged robots operating in real-world environments must possess the ability to rapidly adapt to unexpected conditions, such as changing terrains and varying payloads. This paper introduces the Synaptic Motor Adaptation (SMA) algorithm, a novel approach to achieving real-time online adaptation in quadruped robots through the utilization of neuroscience-derived rules of synaptic plasticity with three-factor learning. To facilitate rapid adaptation, we meta-optimize a three-factor learning rule via gradient descent to adapt to uncertainty by approximating an embedding produced by privileged information using only locally accessible onboard sensing data. Our algorithm performs similarly to state-of-the-art motor adaptation algorithms and presents a clear path toward achieving adaptive robotics with neuromorphic hardware.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here