Synchronization within synchronization: transients and intermittency in ecological networks

20 Nov 2020  ·  Huawei Fan, Ling-Wei Kong, Xingang Wang, Alan Hastings, Ying-Cheng Lai ·

Transients are fundamental to ecological systems with significant implications to management, conservation, and biological control. We uncover a type of transient synchronization behavior in spatial ecological networks whose local dynamics are of the chaotic, predator-prey type. In the parameter regime where there is phase synchronization among all the patches, complete synchronization (i.e., synchronization in both phase and amplitude) can arise in certain pairs of patches as determined by the network symmetry - henceforth the phenomenon of "synchronization within synchronization." Distinct patterns of complete synchronization coexist but, due to intrinsic instability or noise, each pattern is a transient and there is random, intermittent switching among the patterns in the course of time evolution. The probability distribution of the transient time is found to follow an algebraic scaling law with a divergent average transient lifetime. Based on symmetry considerations, we develop a stability analysis to understand these phenomena. The general principle of symmetry can also be exploited to explain previously discovered, counterintuitive synchronization behaviors in ecological networks.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here