SYNERGY: Building Task Bots at Scale Using Symbolic Knowledge and Machine Teaching

21 Oct 2021  ·  Baolin Peng, Chunyuan Li, Zhu Zhang, Jinchao Li, Chenguang Zhu, Jianfeng Gao ·

In this paper we explore the use of symbolic knowledge and machine teaching to reduce human data labeling efforts in building neural task bots. We propose SYNERGY, a hybrid learning framework where a task bot is developed in two steps: (i) Symbolic knowledge to neural networks: Large amounts of simulated dialog sessions are generated based on task-specific symbolic knowledge which is represented as a task schema consisting of dialog flows and task-oriented databases. Then a pre-trained neural dialog model, SOLOIST, is fine-tuned on the simulated dialogs to build a bot for the task. (ii) Neural learning: The fine-tuned neural dialog model is continually refined with a handful of real task-specific dialogs via machine teaching, where training samples are generated by human teachers interacting with the task bot. We validate SYNERGY on four dialog tasks. Experimental results show that SYNERGY maps task-specific knowledge into neural dialog models achieving greater diversity and coverage of dialog flows, and continually improves model performance with machine teaching, thus demonstrating strong synergistic effects of symbolic knowledge and machine teaching.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here