Syntactic Topic Models

NeurIPS 2008 Jordan L. Boyd-GraberDavid M. Blei

We develop \name\ (STM), a nonparametric Bayesian model of parsed documents. \Shortname\ generates words that are both thematically and syntactically constrained, which combines the semantic insights of topic models with the syntactic information available from parse trees... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet