Syntax-based data augmentation for Hungarian-English machine translation

18 Jan 2022  ·  Attila Nagy, Patrick Nanys, Balázs Frey Konrád, Bence Bial, Judit Ács ·

We train Transformer-based neural machine translation models for Hungarian-English and English-Hungarian using the Hunglish2 corpus. Our best models achieve a BLEU score of 40.0 on HungarianEnglish and 33.4 on English-Hungarian. Furthermore, we present results on an ongoing work about syntax-based augmentation for neural machine translation. Both our code and models are publicly available.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here