Synthetic Data Are as Good as the Real for Association Knowledge Learning in Multi-object Tracking

30 Jun 2021  ·  Yuchi Liu, Zhongdao Wang, Xiangxin Zhou, Liang Zheng ·

Association, aiming to link bounding boxes of the same identity in a video sequence, is a central component in multi-object tracking (MOT). To train association modules, e.g., parametric networks, real video data are usually used. However, annotating person tracks in consecutive video frames is expensive, and such real data, due to its inflexibility, offer us limited opportunities to evaluate the system performance w.r.t changing tracking scenarios. In this paper, we study whether 3D synthetic data can replace real-world videos for association training. Specifically, we introduce a large-scale synthetic data engine named MOTX, where the motion characteristics of cameras and objects are manually configured to be similar to those in real-world datasets. We show that compared with real data, association knowledge obtained from synthetic data can achieve very similar performance on real-world test sets without domain adaption techniques. Our intriguing observation is credited to two factors. First and foremost, 3D engines can well simulate motion factors such as camera movement, camera view and object movement, so that the simulated videos can provide association modules with effective motion features. Second, experimental results show that the appearance domain gap hardly harms the learning of association knowledge. In addition, the strong customization ability of MOTX allows us to quantitatively assess the impact of motion factors on MOT, which brings new insights to the community.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here