syrapropa at SemEval-2020 Task 11: BERT-based Models Design For Propagandistic Technique and Span Detection

SEMEVAL 2020  ·  Jinfen Li, Lu Xiao ·

This paper describes the BERT-based models proposed for two subtasks in SemEval-2020 Task 11: Detection of Propaganda Techniques in News Articles. We first build the model for Span Identification (SI) based on SpanBERT, and facilitate the detection by a deeper model and a sentence-level representation. We then develop a hybrid model for the Technique Classification (TC). The hybrid model is composed of three submodels including two BERT models with different training methods, and a feature-based Logistic Regression model. We endeavor to deal with imbalanced dataset by adjusting cost function. We are in the seventh place in SI subtask (0.4711 of F1-measure), and in the third place in TC subtask (0.6783 of F1-measure) on the development set.

PDF Abstract SEMEVAL 2020 PDF SEMEVAL 2020 Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.