Systematic Generalisation through Task Temporal Logic and Deep Reinforcement Learning

12 Jun 2020Borja G. LeonMurray ShanahanFrancesco Belardinelli

This paper presents a neuro-symbolic agent that combines deep reinforcement learning (DRL) with temporal logic (TL), and achieves systematic out-of-distribution generalisation in tasks that involve following a formally specified instruction. Specifically, the agent learns general notions of negation and disjunction, and successfully applies them to previously unseen objects without further training... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet