Systematically Adapting Machine Translation for Grammatical Error Correction

WS 2017  ·  Courtney Napoles, Chris Callison-Burch ·

n this work we adapt machine translation (MT) to grammatical error correction, identifying how components of the statistical MT pipeline can be modified for this task and analyzing how each modification impacts system performance. We evaluate the contribution of each of these components with standard evaluation metrics and automatically characterize the morphological and lexical transformations made in system output. Our model rivals the current state of the art using a fraction of the training data.

PDF Abstract


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here