Systemic values-at-risk and their sample-average approximations

16 Aug 2024  ·  Wissam AlAli, Çağın Ararat ·

This paper investigates the convergence properties of sample-average approximations (SAA) for set-valued systemic risk measures. We assume that the systemic risk measure is defined using a general aggregation function with some continuity properties and value-at-risk applied as a monetary risk measure. We focus on the theoretical convergence of its SAA under Wijsman and Hausdorff topologies for closed sets. After building the general theory, we provide an in-depth study of an important special case where the aggregation function is defined based on the Eisenberg-Noe network model. In this case, we provide mixed-integer programming formulations for calculating the SAA sets via their weighted-sum and norm-minimizing scalarizations. To demonstrate the applicability of our findings, we conduct a comprehensive sensitivity analysis by generating a financial network based on the preferential attachment model and modeling the economic disruptions via a Pareto distribution.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods