TAR on Social Media: A Framework for Online Content Moderation

29 Aug 2021  ·  Eugene Yang, David D. Lewis, Ophir Frieder ·

Content moderation (removing or limiting the distribution of posts based on their contents) is one tool social networks use to fight problems such as harassment and disinformation. Manually screening all content is usually impractical given the scale of social media data, and the need for nuanced human interpretations makes fully automated approaches infeasible. We consider content moderation from the perspective of technology-assisted review (TAR): a human-in-the-loop active learning approach developed for high recall retrieval problems in civil litigation and other fields. We show how TAR workflows, and a TAR cost model, can be adapted to the content moderation problem. We then demonstrate on two publicly available content moderation data sets that a TAR workflow can reduce moderation costs by 20% to 55% across a variety of conditions.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here