TARexp: A Python Framework for Technology-Assisted Review Experiments

23 Feb 2022  ·  Eugene Yang, David D. Lewis ·

Technology-assisted review (TAR) is an important industrial application of information retrieval (IR) and machine learning (ML). While a small TAR research community exists, the complexity of TAR software and workflows is a major barrier to entry. Drawing on past open source TAR efforts, as well as design patterns from the IR and ML open source software, we present an open source Python framework for conducting experiments on TAR algorithms. Key characteristics of this framework are declarative representations of workflows and experiment plans, the ability for components to play variable numbers of workflow roles, and state maintenance and restart capabilities. Users can draw on reference implementations of standard TAR algorithms while incorporating novel components to explore their research interests. The framework is available at https://github.com/eugene-yang/tarexp.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here